Visual Deprivation During the Critical Period Enhances Layer 2/3 GABAergic Inhibition in Mouse V1.

نویسندگان

  • Madhuvanthi Kannan
  • Garrett G Gross
  • Don B Arnold
  • Michael J Higley
چکیده

UNLABELLED The role of GABAergic signaling in establishing a critical period for experience in visual cortex is well understood. However, the effects of early experience on GABAergic synapses themselves are less clear. Here, we show that monocular deprivation (MD) during the adolescent critical period produces marked enhancement of GABAergic signaling in layer 2/3 of mouse monocular visual cortex. This enhancement coincides with a weakening of glutamatergic inputs, resulting in a significant reduction in the ratio of excitation to inhibition. The potentiation of GABAergic transmission arises from both an increased number of inhibitory synapses and an enhancement of presynaptic GABA release from parvalbumin- and somatostatin-expressing interneurons. Our results suggest that augmented GABAergic inhibition contributes to the experience-dependent regulation of visual function. SIGNIFICANCE STATEMENT Visual experience shapes the synaptic organization of cortical circuits in the mouse brain. Here, we show that monocular visual deprivation enhances GABAergic synaptic inhibition in primary visual cortex. This enhancement is mediated by an increase in both the number of postsynaptic GABAergic synapses and the probability of presynaptic GABA release. Our results suggest a contributing mechanism to altered visual responses after deprivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-Term Monocular Deprivation Alters GABA in the Adult Human Visual Cortex

Neuroplasticity is a fundamental property of the nervous system that is maximal early in life, within the critical period [1-3]. Resting GABAergic inhibition is necessary to trigger ocular dominance plasticity and to modulate the onset and offset of the critical period [4, 5]. GABAergic inhibition also plays a crucial role in neuroplasticity of adult animals: the balance between excitation and ...

متن کامل

Laminar-specific maturation of GABAergic transmission and susceptibility to visual deprivation are related to endocannabinoid sensitivity in mouse visual cortex.

The developmental period when neuronal responses are modified by visual experience is reported to start and end earlier in layer 4 than in layer 2/3 of the visual cortex, and the maturation of GABAergic inhibitory circuits is suggested to determine the timing of this period. Here, we examine whether the laminar difference in such timing corresponds to a difference in the time course of the func...

متن کامل

Conditional deletion of Mecp2 in parvalbumin-expressing GABAergic cells results in the absence of critical period plasticity.

Mutations in the X-linked gene encoding the transcriptional modulator methyl-CpG-binding protein 2 (MeCP2) impair postnatal development of the brain. Here we use neuronal-type specific gene deletion in mice to show that conditional Mecp2 deletion in GABAergic parvalbumin-expressing (PV) cells (PV-Mecp2(-/y)) does not cause most Rett-syndrome-like behaviours, but completely abolishes experience-...

متن کامل

Cannabinoid-dependent potentiation of inhibition at eye opening in mouse V1

Cannabinoid (CB) signaling is a well established regulator of synaptic transmission. Recent work demonstrated that CB release is necessary for the induction of inhibitory synaptic plasticity. In primary visual cortex (V1) CB receptors are present throughout life, though their level of expression is developmentally regulated. In the input layer of V1 (layer 4, L4) these receptors show low levels...

متن کامل

Distinct balance of excitation and inhibition in an interareal feedforward and feedback circuit of mouse visual cortex.

Mouse visual cortex is subdivided into multiple distinct, hierarchically organized areas that are interconnected through feedforward (FF) and feedback (FB) pathways. The principal synaptic targets of FF and FB axons that reciprocally interconnect primary visual cortex (V1) with the higher lateromedial extrastriate area (LM) are pyramidal cells (Pyr) and parvalbumin (PV)-expressing GABAergic int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 36 22  شماره 

صفحات  -

تاریخ انتشار 2016